
 

 

    
  
 
 

Git 

Description 

Git is the de-facto standard source control system for the tech industry and is one of the 
most flexible software tools to be found. Any developer or devops person probably 
needs at least a basic understanding of Git to get going and this course is intended for 
that purpose. This course covers all of the fundamental operations an experienced 
coder would use on a daily basis. The course begins with an introduction to Git and a 
comparison of Git to other version control systems. It then transitions into the nuts-and-
bolts of working with Git, including everything from setting up a repository to advanced 
topics like branching and merging. Because the industry sometimes misuses git this 
course is also focuses on clearing up muddled understanding of git: the staging area, 
merge vs rebase, history management, branching and more 

Duration 

24 hours / 3 days 

Intended Audience 

• Any software developer or devops who needs to work with Git or understand Git 
better. 

• Any software developer who has worked with Git but wants a deeper 
understanding of it. 

• System administrators who are moving to devops in general or Git specifically. 

• Any manager who needs to understand what is possible and how to manage git 
using projects. 

Prerequisites 

• Tech affinity. 

Objectives 

• Setup and use git 

• Understand and use Git’s branching features correctly and effectively 

• Decide on which workflows to use when using Git 

Outline 

• Introduction to Git 

– History of Git 



 

– Who is using Git 

– Adopting Git 

• Git basics 

– Setting up a local repository 

– Setting up a client to a repository 

• Local 

• Remote 

– The staging area 

• git status 

• git add 

• git stage 

• git rm 

• git mv 

– Undoing things in the staging area 

• git restore --staged <file> 

• git reset 

• git reset <ref> <file> 

• git reset --hard 

– git diff 

– git commit 

– git log 

– git grep 

• Configuring Git 

– Local and global config files 

– Configuring Git commands 

– Configuring signing 

– Adding aliases 

– .gitignore 

• ignoring patterns 

• whitelisting patterns 

• Undoing things 

– Why you should not rewrite history, especially of published changes 

– History rewriting commands 

– git commit --amend 

– git reset --hard 

– git revert 

– git rebase 

– git restore 

– git cherry-pick and git cherry 

– using git rebase to split past changes 

– extreme undoing 



 

• Cutting the history tail 

• Rewriting many commits 

• Remote repositories 

– Working with a remote repository 

– Setting up / publishing a repository 

– Understanding the repository structure 

– Working with Multiple remotes 

– Working with GitHub 

• Branches 

– Theory: the many reasons we want local branches 

– Theory: the many reasons we want branches 

– Creating branches: git branch 

– Describing branches: git branch --edit-description 

– Renaming branches: git branch -m 

– Working on branches 

– Committing on branches 

– Moving between branches 

• git checkout 

• git switch 

– Visualizing branching activity 

– Pruning local/remote branches git branch -d git branch -D 

– git reflog 

• Merging changes 

– git fetch 

– git pull 

– git rebase 

– Fast forwarding? 

– Cherry picking 

– Handling conflicts 

• basics 

• using merge tools 

• Merge vs Rebase 

– Which should you choose? (Rebase) 

– Why? 

• Workflows 

– Git does not force a workflow 

– Feature branches 

– Development vs production 

– Back porting changes 

– Examples of workflows 

• Working with your own workflow 



 

• Jenkins 

• Working with pull requests 

• Gerrit 

• Showing Git data 

– git log 

– git ls-files 

– git show 

– git diff 

– git show-branch 

– git blame and git annotate 

– git whatchanged 

– Visual tools 

• Gitk 

• Source Tree 

• Git Karen 

• Git Cola 

• Many more 

• Under the hood 

– Digital signatures overview 

– Core ideas 

• Always on a branch 

• SHA includes all history 

• SHA is unique in the world 

– Core concepts 

• The three core structures: commit, tree, blob 

• Commits point to previous commit 

• Commits point to trees 

• Trees point to blobs (never store anything twice) 

– .git: 

• The Git object store and how it works 

• What branch am I on? 

• What commit am I on? 

• Where are the tags? 

• Where are the heads? 

• Where are the remotes? 

– What happens when you 

• Add to staging area (the index) 

• Commit 

• Create a branch 

• Create an annotated tag 

• Work trees 



 

– Why are they needed? 

– Creating a worktree 

– Working with worktrees 

– Pruning worktrees 

• Tagging 

– Why tag? 

– Difference between annotated and non annotated tags 

– Pushing and pulling tags 

– Using tags in other Git commands 

• Understanding revisions (gitrevisions) 

– Various things git understands 

• \<branch\> 

• \<object\> 

• \<commit\> 

• \<commit-ish\> 

• \<tree\> 

• \<tree-ish\> 

• \<pathspec\> 

– Commit-ish vs Tree-ish 

– git rev-parse 

• Searching by content 

– git grep with git rev-list 

– git log 

• git sub-modules 

– How to create them? 

– How to pull them? 

• Stashing 

– Why would you want stashing? 

– Creating and naming stashes 

– Apply a specific stash 

– Delete stashes 

• Git hooks 

– How to set up hooks? 

– What guarantees do you get? 

• Built in tools 

– git instaweb 

– git daemon 

– git http-backend 

– git shell 

– git export 

– git bisect 



 

– git describe 

– git archive 

– git bundle 

– git submodule 

– git notes 

• Git tools 

– Git and programming languages: GitPython 

– Git and development platforms: GitHub, BitBucket, Gitlab 

– Git and IDEs: PyCharm, Eclipse, Spyder 

– Git and CICD tools: Jenkins, Bamboo 

Installations 

• Any recent distribution of Linux with sudo/root privilege. 

• WSL installation on Windows with git installed. 

• Git BASH installed on Windows. 

• In any case the installations are not a must and the instructor can guide the 
students how to perform the installations on the first day of the course. 

 

 

 

 

 

 

 

 
 

https://gitforwindows.org/

